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Abstract
Let q(x) be a real-valued compactly supported sufficiently smooth function. It
is proved that the scattering data A(−β, β, k) ∀β ∈ S2, ∀k > 0 determine q
uniquely.
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Mathematics Subject Classification: 35P25, 35R30, 81Q05

1. Introduction

Since the forties of the last century, the physicists were interested in the uniqueness of the
determination of a physical system by its S-matrix. If the physical system is described by a
Hamiltonian of the type H = −∇2 + q(x), then the S-matrix is in one-to-one correspondence
with the scattering amplitude A, S = I + ik

2π
A, where I is the identity operator and A is

an operator in L2(S2) with the kernel A(β, α, k), S2 is the unit sphere in R
3 and k2 is the

energy, k > 0. The scattering amplitude is defined as follows. If the incident plane wave
u0 = eikα·x , α ∈ S2, is scattered by the potential q, then the scattering solution u(x, α, k)

solves the scattering problem:

[∇2 + k2 − q(x)]u = 0 in R
3 (1)

u = eikα·x + A(β, α, k)
eikr

r
+ o

(
1

r

)
, r := |x| → ∞, β := x

r
. (2)

The coefficient A(β, α, k) is called the scattering amplitude. The problem of interest is to
determine q(x) given the scattering data. This problem is called the inverse scattering problem.
The function A(β, α, k) depends on two unit vectors β, α, and on the scalar k, i.e. on five
variables.

Assumption (A). We assume that q is compactly supported, i.e. q(x) = 0 for |x| > a, where
a > 0 is an arbitrary large fixed number, q(x) is real valued, i.e. q = q, and q(x) ∈ H�

0 (Ba),
� > 2.
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Here Ba is the ball centered at the origin and of radius a, and H�
0 (Ba) is the closure of

C∞
0 (Ba) in the norm of the Sobolev space H�(Ba) of functions whose derivatives up to the

order � belong to L2(Ba). It was proved in [4] (see also [5] and [6], chapter 6) that if q = q and
q ∈ L2(Ba) is compactly supported, then the resolvent kernel G(x, y, k) of the Schrödinger
operator −∇2 + q(x) − k2 is a meromorphic function of k on the whole complex plane k,
analytic in Imk � 0 except, possibly, of a finitely many simple poles at the points ikj , kj > 0,
1 � j � n, where −k2

j are negative eigenvalues of the self-adjoint operator −∇2 + q(x) in

L2(R3). Consequently, the scattering amplitude A(β, α, k), corresponding to the above q, is
a restriction to the positive semi-axis k ∈ [0,∞) of a meromorphic on the whole complex
k-plane function.

It was known long ago that the scattering data A(β, α, k) ∀α, β ∈ S2, ∀k > 0, determine
q(x) uniquely. For even larger class of potentials, this result was proved in [12].

The above scattering data depend on five variables (two unit vectors α and β, and one scalar
k). The potential q(x) depends on three variables (x1, x2, x3). Therefore, the inverse scattering
problem, which consists of finding q from the above scattering data, is overdetermined.

It was proved by the author [7] that the fixed-energy scattering data A(β, α) :=
A(β, α, k0), k0 = const > 0, ∀β ∈ S2

1 , ∀α ∈ S2
2 , determine real-valued compactly supported

q ∈ L2(Ba) uniquely. Here S2
j , j = 1, 2, are arbitrary small open subsets of S2 (solid angles).

In [8] (and in [9], chapter 5) an analytical formula is derived for the reconstruction of q
from the exact fixed-energy scattering data, and from noisy fixed-energy scattering data, and
stability estimates for the reconstruction method are obtained.

The scattering data A(β, α) depend on four variables (two unit vectors), while the unknown
q(x) depends on three variables. In this sense the inverse scattering problem, which consists
of finding q from the fixed-energy scattering data A(β, α), is still overdetermined.

For many decades there were no uniqueness theorems for 3D inverse scattering problems
with non-overdetermined data. The goal of this communication is to prove such a theorem.

Theorem 1.1. If q = q ∈ H�
0 (Ba), � > 2, then the data A(−β, β, k) ∀β ∈ S2, ∀k > 0,

determine q uniquely.

Remark 1. The conclusion of theorem 1.1 remains valid if the data A(−β, β, k) are known
∀β ∈ S2

1 and k ∈ (k0, k1) where (k0, k1) ⊂ [0,∞) is an arbitrary small interval, k1 > k0, and
S2

1 is an arbitrary small open subset of S2.

In some physical problems, the potential may depend on k, q = q(x, k), x ∈ R3,
k ∈ [0,∞). In this case the inverse scattering problem with the back-scattering data
A(−β, β, k) is underdetermined: the data is a function of three variables while q(x, k) depends
on four variables. In general, one cannot expect that this inverse scattering problem has a
unique solution.

In section 2 we formulate some known auxiliary results. In section 3 proof of theorem 1.1
is given. In the appendix a technical estimate is proved. A brief announcement of the result,
stated in theorem 1.1, is given in [3].

2. Auxiliary results

Let

F(g) := g̃(ξ) =
∫

R
3
g(x) eiξ ·x dx, g(x) = 1

(2π)3

∫
R

3
e−iξ ·x g̃(ξ) dξ. (3)

2
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If f ∗ g := ∫
R

3 f (x − y)g(y) dy, then

F(f ∗ g) = f̃ (ξ)g̃(ξ), F (f (x)g(x)) = 1

(2π)3
f̃ ∗ g̃. (4)

If

G(x − y, k) := eik[|x−y|−β·(x−y)]

4π |x − y| , (5)

then

F(G(x, k)) = 1

ξ 2 − 2kβ · ξ
, ξ 2 := ξ · ξ. (6)

The scattering solution u = u(x, α, k) solves (uniquely) the integral equation

u(x, α, k) = eikα·x −
∫

Ba

g(x, y, k)q(y)u(y, α, k) dy, (7)

where

g(x, y, k) := eik|x−y|

4π |x − y| . (8)

If

v = e−ikα·xu(x, α, k), (9)

then

v = 1 −
∫

Ba

G(x − y, k)q(y)v(y, α, k) dy, (10)

where G is defined in (5).
Define ε by the formula

v = 1 + ε. (11)

Then (10) can be rewritten as

ε(x, α, k) = −
∫

R
3
G(x − y, k)q(y) dy − T ε, (12)

where

T ε :=
∫

Ba

G(x − y, k)q(y)ε(y, α, k) dy.

The Fourier transform of (12) yields (see (4), (6))

ε̃(ξ, α, k) = − q̃(ξ)

ξ 2 − 2kα · ξ
− 1

(2π)3

1

ξ 2 − 2kα · ξ
q̃ ∗ ε̃. (13)

An essential ingredient of our proof in section 3 is the following lemma, proved by the author
(see its proof in [9], p 262, or in [8]):

Lemma 2.1. If Aj(β, α, k) is the scattering amplitude corresponding to the potential qj, then

−4π [A1(β, α, k) − A2(β, α, k)] =
∫

B1

[q1(x) − q2(x)]u1(x, α, k)u2(x,−β, k) dx, (14)

where uj is the scattering solution corresponding to qj.

3
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Consider an algebraic variety M in C
3 defined by the equation

θ · θ = 1, θ · θ := θ2
1 + θ2

2 + θ2
3 , θj ∈ C. (15)

This is a non-compact variety, intersecting R
3 over the unit sphere S2.

Let R+ = [0,∞). The following result is proved in [10], p 62.

Lemma 2.2. If assumption (A) holds, then the scattering amplitude A(β, α, k) is a restriction
to S2×S2×R+ of a function A(θ ′, θ, k) onM×M×C, analytic onM×M and meromorphic
on C, θ ′, θ ∈ M, k ∈ C.

The scattering solution u(x, α, k) is a meromorphic function of k in C, analytic in Imk � 0,
except, possibly, at the points k = ikj , 1 � j � n.

We need the notion of the Radon transform (see, e.g., [11]):

f̂ (β, λ) :=
∫

β·x=λ

f (x) dσ, (16)

where dσ is the element of the area of the plane β · x = λ, β ∈ S2, λ = const. One has (see
[11], pp 12, 15)∫

Ba

f (x) dx =
∫ a

−a

f̂ (β, λ) dλ, (17)

∫
Ba

eikβ·xf (x) dx =
∫ a

−a

eikλf̂ (β, λ) dλ, (18)

f̂ (β, λ) = f̂ (−β,−λ). (19)

Finally, we need a Phragmen–Lindelöf lemma, which is proved in [1], p 69, and in [2].

Lemma 2.3. Let f (z) be holomorphic inside an angle A of opening < π ; |f (z)| � c1 ec2|z|,
z ∈ A; |f (z)| � M on the boundary of A; and f is continuous up to the boundary of A. Then
|f (z)| � M,∀z ∈ A.

3. Proof of theorem 1.1

We start with the observation that the scattering data in remark 1 determine uniquely the
scattering data in theorem 1.1 by lemma 2.2.

Let us outline the ideas of the proof of theorem 1.1.
Assume that qj, j = 1, 2, generate the same scattering data:

A1(−β, β, k) = A2(−β, β, k) ∀β ∈ S2, ∀k > 0,

and let

p(x) := q1(x) − q2(x).

Then by lemma 2.1, see equation (14), one gets

0 =
∫

Ba

p(x)u1(x, β, k)u2(x, β, k) dx, ∀β ∈ S2, ∀k > 0. (20)

By (9) and (11) one can rewrite (20) as∫
Ba

e2ikβ·x[1 + ε(x, k)]p(x) dx = 0, ∀β ∈ S2, ∀k > 0, (21)

4
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where

ε(x, k) := ε := ε1(x, k) + ε2(x, k) + ε1(x, k)ε2(x, k).

By lemma 2.2, relations (20) and (21) hold for complex k,

k = κ + iη

2
, κ + iη 
= 2ikj , η � 0, (22)

in particular, for η > kn, κ ∈ R. Using formulas (3)–(4), one derives from (21) the relation

p̃((κ + iη)β) +
1

(2π)3
(ε̃ ∗ p̃)((κ + iη)β) = 0 ∀β ∈ S2, ∀κ ∈ R, η > kn, (23)

where the notation (f ∗ g)(z) means that the convolution f ∗ g is calculated at the argument
(κ + iη)β.

One has

sup
β∈S2

|ε̃ ∗ p̃| := sup
β∈S2

∣∣∣∣
∫

R
3
ε̃((κ + iη)β − s)p̃(s) ds

∣∣∣∣ � ν(κ, η) sup
s∈R

3

|p̃(s)|, (24)

where

ν(κ, η) := sup
β∈S2

∫
R

3
|ε̃((κ + iη)β − s)| ds.

We will prove that if η = η(κ) = O(ln κ), then the following inequality holds:

0 < ν(κ, η(κ)) < 1, κ → ∞. (25)

If one proves that

sup
β∈S2

|p̃((κ + iη(κ))β)| � sup
s∈R

3

|p̃(s)|, κ → ∞, (26)

then it follows from (23)–(26) that p̃(s) = 0, so p(x) = 0, and theorem 1.1 is proved. Indeed,
it follows from (23) and (26) that

sup
s∈R

3

|p̃(s)| � 1

(2π)3
ν(k, η) sup

s∈R
3

|p̃(s)|.

If (25) holds, then the above equation implies that p̃ = 0. This and the injectivity of the
Fourier transform imply that p = 0.

This completes the outline of the proof of theorem 1.1.
Let us now establish estimates (25) and (26).
We assume that p(x) 
≡ 0, because otherwise there is nothing to prove. If p(x) 
≡ 0, then

max
s∈R

3
|p̃(s)| := P 
= 0.

Lemma 3.1. If assumption (A) holds and P 
= 0, then

lim sup
η→∞

max
β∈S2

|p̃((κ + iη)β)| = ∞, (27)

where κ > 0 is arbitrary but fixed. For any κ > 0 there is a η = η(κ), such that

max
β∈S2

|p̃((κ + iη(κ))β)| = P, (28)

where the number P := maxs∈R
3 |p̃(s)|, and

η(κ) = O(ln κ) as κ → +∞. (29)

5
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Proof of lemma 3.1. By formula (18) one gets

p̃((κ + iη)β) =
∫

Ba

p(x) ei(κ+iη)β·x dx =
∫ a

−a

eiκλ−ηλp̂(β, λ) dλ. (30)

The function p̂(β, λ) satisfies (19). Therefore,

max
β∈S2

|p̃((κ + iη(κ))β)| = max
β∈S2

|p̃((κ − iη(κ))β)|. (31)

Indeed,

max
β∈S2

|p̃((κ + iη(κ))β) = max
β∈S2

∣∣∣∣
∫ a

−a

eiκλ−ηλp̂(β, λ) dλ

∣∣∣∣
= max

β∈S2

∣∣∣∣
∫ a

−a

e−iκμ+ημp̂(β,−μ) dμ

∣∣∣∣
= max

β ′∈S2

∣∣∣∣
∫ a

−a

e−iκμ+ημp̂(−β ′,−μ) dμ

∣∣∣∣
= max

β ′∈S2

∣∣∣∣
∫ a

−a

e−iκμ+ημp̂(β ′, μ) dμ

∣∣∣∣
= max

β∈S2
|p̃((κ − iη)β)|. (32)

Here we took into account that p̂(β, λ) is a real-valued function because qj (x) are real valued.
Therefore, ∣∣∣∣

∫ a

−a

e−iκμ+ημp̂(β̃, μ) dμ

∣∣∣∣ =
∣∣∣∣
∫ a

−a

eiκμ+ημp̂(β̃, μ) dμ

∣∣∣∣ = max
β∈S2

|p̃((κ − iη)β)|.

If p(x) 
≡ 0, then (30) and (31) imply (27), as follows from lemma 2.3. Let us give a detailed
argument.

Consider the function h of the complex variable z := κ + iη:

h := h(z, β) :=
∫ a

−a

eizλp̂(β, λ) dλ. (33)

If (27) is false, then

|h(z, β)| � c ∀z = κ + iη, η � 0, ∀β ∈ S2, (34)

where κ � 0 is an arbitrary fixed number, and the constant c > 0 does not depend on β and η.
Thus, |h| is bounded on the ray {κ = 0, η � 0}, which is part of the boundary of the right

angle A, and the other part of its boundary is the ray {κ � 0, η = 0}. Let us check that |h| is
bounded on this ray also.

One has

|h(κ, β)| �
∣∣∣∣
∫ a

−a

eiκλp̂(β, λ) dλ

∣∣∣∣ �
∫ a

−a

|p̂(β, λ)| dλ � c, (35)

where c stands for various constants. From (34)–(35) it follows that on the boundary of the
right angle A, namely, on the two rays {κ � 0, η = 0} and {κ = 0, η � 0, }, the entire function
h(z, β) is bounded, |h(z, β)| � c, and inside A this function satisfies the estimate

|h(z, β)| � e|η|a
∫ a

−a

|p̂(β, λ)| dλ � c e|η|a. (36)

Therefore, by lemma 2.3, |h(z, β)| � c in the whole angle A.

6
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By (31) the same argument is applicable to the remaining three right angles, the union of
which is the whole complex z-plane C. Therefore,

sup
z∈C,β∈S2

|h(z, β)| � c. (37)

This implies that h(z, β) = c.

Since p̂(β, λ) ∈ L1(−a, a), the relation∫ a

−a

eizλp̂(β, λ) dλ = c ∀z ∈ C, (38)

implies that c = 0, so p̂(β, λ) = 0. Therefore p(x) = 0, contrary to our assumption.
Consequently, relation (27) is proved.

Relation (28) follows from (27) because for large η the left-hand side of (28) is larger than
P due to (27), while for η = 0 the left-hand side of (28) is not larger than P by the definition
of the Fourier transform. �

Let us derive estimate (29).
From the assumption p(x) ∈ H�

0 (Ba) it follows that

|p̃((κ + iη)β)| � c
ea|η|

(1 + κ2 + η2)�/2
. (39)

This inequality is established in Lemma 3.2, below.
The right-hand side of this inequality is of the order O(1) as κ → ∞ if and only if

|η| = O(ln κ), which is relation (29).

Lemma 3.2. If p ∈ H�
0 (Ba) then estimate (39) holds.

Proof. Consider ∂jp := ∂p

∂xj
. One has

∣∣∣∣
∫

Ba

∂jp ei(κ+iη)β·x dx

∣∣∣∣ =
∣∣∣∣−i(κ + iη)βj

∫
Ba

p(x)ei(κ+iη)β·x dx

∣∣∣∣
= (κ2 + η2)1/2|p̃((κ + iη)β)|. (40)

The left-hand side of the above formula admits the following estimate:∣∣∣∣
∫

Ba

∂jp ei(κ+iη)β·x dx

∣∣∣∣ � c e|η|a,

where the constant c > 0 is proportional to ‖∂jp‖L2(Ba). Therefore,

|p̃((κ + iη)β)| � c[1 + (κ2 + η2)]−1/2 e|η|a. (41)

Repeating this argument one gets estimate (39).
Estimate (41) implies that if estimate (29) holds and κ → ∞, then the quantity

supβ∈S2 |p̃((κ + iη)β)| remains bounded as κ → ∞.
If η is fixed and κ → ∞, then supβ∈S2 |p̃((κ + iη)β)| → 0 by the Riemann–Lebesgue

lemma. This and (27) imply the existence of η = η(κ), such that (28) holds, and, consequently,
(26) holds. This η(κ) satisfies (29) because P is bounded. �

7
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To complete the proof of theorem 1.1 one has to establish estimate (25). This estimate
will be established if one proves the following:

lim
κ→∞ ν(κ) := lim

κ→∞ ν(κ, η(κ)) = 0, (42)

where η(κ) = O(ln κ) and

ν(κ, η) = sup
β∈S2

∫
R

3
|ε̃((κ + iη)β − s)| ds. (43)

Our argument is valid for ε1, ε2 and ε1ε2, so we will use the letter ε and equation (13)
for ε̃.

We prove that (13) can be solved by iterations if |k + iη| is sufficiently large and η = η(k),
because for such k the operator in this equation has small norm. Therefore, the estimate of the
solution ε̃ to this equation is similar to the estimate of the free term of this equation. Thus, it is
sufficient to check estimates (42)–(43) for the function q̃(ξ)(ξ 2 − 2kβ · ξ)−1, with 2k replaced
by κ + iη, because equation (12) has an operator

T ε =
∫

Ba

G(x − y, k)q(y)ε(y, k) dy,

and the norm ‖T 2‖ (in the space C(Ba) of functions with the sup norm) tends to zero as
κ = 2 Re k → ∞. Consequently, equation (12) can be solved by iterations and the main term
in its solution, as |κ + iη| → ∞, η � 0, is the free term in this equation. The same is true for
the Fourier transform of equation (12), i.e. for equation (13).

Let us estimate the integral

I = sup
β∈S2

∫
R

3

|q̃((κ + iη)β − s)|ds

|[(κ + iη)β − s)2 − (κ + iη)β · ((κ + iη)β − s)]|

� c sup
β∈S2

e|η|a
∫

R
3

ds

|s2 − (κ + iη)β · s|[1 + (κβ − s)2 + η2]�/2

:= c e|η|aJ. (44)

Here estimate (39) was used.
Let us write the integral J in the spherical coordinates with the x3-axis directed along the

vector β, |s| = r , β · s = r cos θ := rt,−1 � t � 1. Let

γ := κ2 + η2. (45)

Then

J � 2π

∫ ∞

0
dr r

∫ 1

−1

dt

[(r − κt)2 + η2t2]1/2(1 + γ + r2 − 2rκt)�/2

:= 2π

∫ ∞

0
dr rB(r), (46)

where

B := B(r) = B(r, κ, η) :=
∫ 1

−1

dt

[(r − κt)2 + η2t2]1/2(1 + γ + r2 − 2rκt)�/2
. (47)

If t ∈ [−1, 1], then

1 + γ + r2 − 2rκt � 1 + γ 2 + r2 − 2rκ = 1 + η2 + (r − κ)2. (48)

8
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Thus,

B � 1

[1 + η2 + (r − κ)2]�/2

1√
γ

∫ 1

−1

dt[(
t − rκ

γ

)2
+ η2r2

γ 2

]1/2

= 1√
γ [1 + η2 + (r − κ)2]�/2

∣∣∣∣∣∣ln
∣∣∣∣∣∣
1 − rκ

γ
+

√(
1 − rκ

γ

)2
+ η2r2

γ 2√(
1 + rκ

γ

)2
+ η2r2

γ 2 − 1 − rκ
γ

∣∣∣∣∣∣
∣∣∣∣∣∣ . (49)

Consequently,

J � 2π√
γ

∫ ∞

0

dr r

[1 + η2 + (r − κ)2]�/2

∣∣∣∣∣∣ln
∣∣∣∣∣∣
1 − rκ

γ
+

√(
1 − rκ

γ

)2
+ η2r2

γ 2√(
1 + rκ

γ

)2
+ η2r2

γ 2 − 1 − rκ
γ

∣∣∣∣∣∣
∣∣∣∣∣∣ . (50)

The integral in (50) converges: as r → ∞ the ratio under the logarithm sign tends to 1, and
the factor in front of the logarithm is O(r−(�−1)) as r → ∞. Since � > 2, the integral in (50)
converges.

The modulus of the logarithmic term in (50) behaves asymptotically, as r → 0, like∣∣ ln
(

r2κ2

γ 2

)∣∣. Thus, limr→0 r
∣∣ ln

(
r2κ2

γ 2

)∣∣ = 0 for every fixed κ > 0, and this limit is uniform with
respect to κ as κ → ∞ if η = O(ln κ). Therefore, the integrand in (50) is defined for r = 0
to be zero by continuity.

As γ = η2 +κ2 → ∞ and η = O(ln κ), the integrand in (50) tends to zero for every fixed
r � 0, and (50) implies

J � o

(
1√
γ

)
, γ → ∞. (51)

Consequently, (44) implies

I � cr |η|ao

(
1√

κ2 + η2

)
, κ → ∞, η = O(ln κ). (52)

Therefore,

lim
κ→∞,η=O(ln κ)

I = 0. (53)

This implies estimate (42). Theorem 1.1 is proved. �

Remark 2. Similarly one can prove that the data A(β, α0, k), ∀β ∈ S2, ∀k > 0, and a fixed
α = α0 ∈ S2 determine q uniquely if assumption (A) holds.

Appendix. Estimate of the norm of the operator T2

Let

Tf :=
∫

Ba

G(x − y, κ + iη)q(y)f (y) dy. (A.1)

Assume q ∈ H�
0 (Ba), � > 2, f ∈ C(Ba). Our goal is to prove that equation (12) can be solved

by iterations for all sufficiently large κ .
Consider T as an operator in C(Ba). One has

T 2f =
∫

Ba

dz G(x − z, κ + iη)q(z)

∫
Ba

G(z − y, κ + iη)q(y)f (y) dy

=
∫

Ba

dy f (y)q(y)

∫
Ba

dz q(z)G(x − z, κ + iη)G(z − y, κ + iη). (A.2)

9
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Let us estimate the integral

I (x, y) :=
∫

Ba

G(x − z, κ + iη)G(z − y, κ + iη)q(z) dz

=
∫

Ba

ei(κ+iη)[|x−z|−β·(x−z)+|z−y|−β·(z−y)]

16π2|x − z‖z − y| q(z) dz

= 1

16π2

∫
Ba

ei(κ+iη)[|x−z|+|z−y|−β·(x−y)]

|x − z‖z − y| q(z) dz

:= e−i(κ+iη)β·(x−y)

16π2
I1(x, y). (A.3)

Let us use the following coordinates (see [10], p 391):

z1 = �st +
x1 + y1

2
, z2 = �

√
(s2 − 1)(1 − t2) cos ψ +

x2 + y2

2
, (A.4)

z3 = �
√

(s2 − 1)(1 − t2) sin ψ +
x3 + y3

2
. (A.5)

The Jacobian J of the transformation (z1, z2, z3) → (�, t, ψ) is

J = �3(s2 − t2), (A.6)

where

� = |x − y|
2

, |x − z| + |z − y| = 2�s, |x − z| − |z − y| = 2�t, (A.7)

|x − z‖z − y| = 4�2(s2 − t2), 0 � ψ < 2π, t ∈ [−1, 1], s ∈ [1,∞). (A.8)

One has

I1 = �

∫ ∞

a

e2i(κ+iη)�sQ(s) ds, (A.9)

where

Q(s) := Q

(
s, �,

x + y

2

)
=

∫ 2π

0
dψ

∫ 1

−1
dt q

(
z

(
s, t, ψ; �,

x + y

2

))
, (A.10)

and the function Q(s) ∈ H 2
0 (R3) for any fixed x, y. Therefore, an integration by parts in (A.9)

yields the following estimate:

|I1| = O

(
1

|κ + iη|
)

, |κ + iη| → ∞. (A.11)

From (A.2), (A.3) and (A.11) one gets

‖T 2‖ = O

(
1√
γ

)
, γ := κ2 + η2 → ∞. (A.12)

Therefore, integral equation (12), with k replaced by κ+iη
2 , can be solved by iterations if γ is

sufficiently large and η � 0. Consequently, integral equation (13) can be solved by iterations.
Thus, estimate (42) holds if such an estimate holds for the free term in equation (13), that is,
for the function q̃

ξ 2−(κ+iη)β·ξ , namely, if estimate (53) holds.
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