Uniqueness theorem for an inverse scattering problem with non-overdetermined data

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2010 J. Phys. A: Math. Theor. 43112001
(http://iopscience.iop.org/1751-8121/43/11/112001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.157
The article was downloaded on 03/06/2010 at 08:41

Please note that terms and conditions apply.

FAST TRACK COMMUNICATION

Uniqueness theorem for an inverse scattering problem with non-overdetermined data

A G Ramm
Department of Mathematics, Kansas State University, Manhattan, KS 66506-2602, USA
E-mail: ramm@math.ksu.edu

Received 30 October 2009, in final form 12 January 2010
Published 26 February 2010
Online at stacks.iop.org/JPhysA/43/112001

Abstract

Let $q(x)$ be a real-valued compactly supported sufficiently smooth function. It is proved that the scattering data $A(-\beta, \beta, k) \forall \beta \in S^{2}, \forall k>0$ determine q uniquely.

PACS number: 03.65.Nk
Mathematics Subject Classification: 35P25, 35R30, 81Q05

1. Introduction

Since the forties of the last century, the physicists were interested in the uniqueness of the determination of a physical system by its S-matrix. If the physical system is described by a Hamiltonian of the type $H=-\nabla^{2}+q(x)$, then the S-matrix is in one-to-one correspondence with the scattering amplitude $A, S=I+\frac{i k}{2 \pi} A$, where I is the identity operator and A is an operator in $L^{2}\left(S^{2}\right)$ with the kernel $A(\beta, \alpha, k), S^{2}$ is the unit sphere in \mathbb{R}^{3} and k^{2} is the energy, $k>0$. The scattering amplitude is defined as follows. If the incident plane wave $u_{0}=\mathrm{e}^{\mathrm{i} k \cdot x}, \alpha \in S^{2}$, is scattered by the potential q, then the scattering solution $u(x, \alpha, k)$ solves the scattering problem:

$$
\begin{align*}
& {\left[\nabla^{2}+k^{2}-q(x)\right] u=0 \quad \text { in } \mathbb{R}^{3}} \tag{1}\\
& u=\mathrm{e}^{\mathrm{i} k \alpha \cdot x}+A(\beta, \alpha, k) \frac{\mathrm{e}^{\mathrm{i} k r}}{r}+o\left(\frac{1}{r}\right), \quad r:=|x| \rightarrow \infty, \quad \beta:=\frac{x}{r} \tag{2}
\end{align*}
$$

The coefficient $A(\beta, \alpha, k)$ is called the scattering amplitude. The problem of interest is to determine $q(x)$ given the scattering data. This problem is called the inverse scattering problem. The function $A(\beta, \alpha, k)$ depends on two unit vectors β, α, and on the scalar k, i.e. on five variables.

Assumption (A). We assume that q is compactly supported, i.e. $q(x)=0$ for $|x|>a$, where $a>0$ is an arbitrary large fixed number, $q(x)$ is real valued, i.e. $q=\bar{q}$, and $q(x) \in H_{0}^{\ell}\left(B_{a}\right)$, $\ell>2$.

Here B_{a} is the ball centered at the origin and of radius a, and $H_{0}^{\ell}\left(B_{a}\right)$ is the closure of $C_{0}^{\infty}\left(B_{a}\right)$ in the norm of the Sobolev space $H^{\ell}\left(B_{a}\right)$ of functions whose derivatives up to the order ℓ belong to $L^{2}\left(B_{a}\right)$. It was proved in [4] (see also [5] and [6], chapter 6) that if $q=\bar{q}$ and $q \in L^{2}\left(B_{a}\right)$ is compactly supported, then the resolvent kernel $G(x, y, k)$ of the Schrödinger operator $-\nabla^{2}+q(x)-k^{2}$ is a meromorphic function of k on the whole complex plane k, analytic in $\operatorname{Im} k \geqslant 0$ except, possibly, of a finitely many simple poles at the points $\mathrm{i} k_{j}, k_{j}>0$, $1 \leqslant j \leqslant n$, where $-k_{j}^{2}$ are negative eigenvalues of the self-adjoint operator $-\nabla^{2}+q(x)$ in $L^{2}\left(\mathbb{R}^{3}\right)$. Consequently, the scattering amplitude $A(\beta, \alpha, k)$, corresponding to the above q, is a restriction to the positive semi-axis $k \in[0, \infty)$ of a meromorphic on the whole complex k-plane function.

It was known long ago that the scattering data $A(\beta, \alpha, k) \forall \alpha, \beta \in S^{2}, \forall k>0$, determine $q(x)$ uniquely. For even larger class of potentials, this result was proved in [12].

The above scattering data depend on five variables (two unit vectors α and β, and one scalar $k)$. The potential $q(x)$ depends on three variables $\left(x_{1}, x_{2}, x_{3}\right)$. Therefore, the inverse scattering problem, which consists of finding q from the above scattering data, is overdetermined.

It was proved by the author [7] that the fixed-energy scattering data $A(\beta, \alpha):=$ $A\left(\beta, \alpha, k_{0}\right), k_{0}=$ const $>0, \forall \beta \in S_{1}^{2}, \forall \alpha \in S_{2}^{2}$, determine real-valued compactly supported $q \in L^{2}\left(B_{a}\right)$ uniquely. Here $S_{j}^{2}, j=1,2$, are arbitrary small open subsets of S^{2} (solid angles).

In [8] (and in [9], chapter 5) an analytical formula is derived for the reconstruction of q from the exact fixed-energy scattering data, and from noisy fixed-energy scattering data, and stability estimates for the reconstruction method are obtained.

The scattering data $A(\beta, \alpha)$ depend on four variables (two unit vectors), while the unknown $q(x)$ depends on three variables. In this sense the inverse scattering problem, which consists of finding q from the fixed-energy scattering data $A(\beta, \alpha)$, is still overdetermined.

For many decades there were no uniqueness theorems for 3D inverse scattering problems with non-overdetermined data. The goal of this communication is to prove such a theorem.

Theorem 1.1. If $\bar{q}=q \in H_{0}^{\ell}\left(B_{a}\right), \ell>2$, then the data $A(-\beta, \beta, k) \forall \beta \in S^{2}, \forall k>0$, determine q uniquely.

Remark 1. The conclusion of theorem 1.1 remains valid if the data $A(-\beta, \beta, k)$ are known $\forall \beta \in S_{1}^{2}$ and $k \in\left(k_{0}, k_{1}\right)$ where $\left(k_{0}, k_{1}\right) \subset[0, \infty)$ is an arbitrary small interval, $k_{1}>k_{0}$, and S_{1}^{2} is an arbitrary small open subset of S^{2}.

In some physical problems, the potential may depend on $k, q=q(x, k), x \in R^{3}$, $k \in[0, \infty)$. In this case the inverse scattering problem with the back-scattering data $A(-\beta, \beta, k)$ is underdetermined: the data is a function of three variables while $q(x, k)$ depends on four variables. In general, one cannot expect that this inverse scattering problem has a unique solution.

In section 2 we formulate some known auxiliary results. In section 3 proof of theorem 1.1 is given. In the appendix a technical estimate is proved. A brief announcement of the result, stated in theorem 1.1, is given in [3].

2. Auxiliary results

Let

$$
\begin{equation*}
F(g):=\tilde{g}(\xi)=\int_{\mathbb{R}^{3}} g(x) \mathrm{e}^{\mathrm{i} \xi \cdot x} \mathrm{~d} x, \quad g(x)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \mathrm{e}^{-\mathrm{i} \xi \cdot x} \tilde{g}(\xi) \mathrm{d} \xi \tag{3}
\end{equation*}
$$

If $f * g:=\int_{\mathbb{R}^{3}} f(x-y) g(y) \mathrm{d} y$, then

$$
\begin{equation*}
F(f * g)=\tilde{f}(\xi) \tilde{g}(\xi), \quad F(f(x) g(x))=\frac{1}{(2 \pi)^{3}} \tilde{f} * \tilde{g} . \tag{4}
\end{equation*}
$$

If

$$
\begin{equation*}
G(x-y, k):=\frac{\mathrm{e}^{\mathrm{i} k[|x-y|-\beta \cdot(x-y)]}}{4 \pi|x-y|}, \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
F(G(x, k))=\frac{1}{\xi^{2}-2 k \beta \cdot \xi}, \quad \xi^{2}:=\xi \cdot \xi . \tag{6}
\end{equation*}
$$

The scattering solution $u=u(x, \alpha, k)$ solves (uniquely) the integral equation

$$
\begin{equation*}
u(x, \alpha, k)=\mathrm{e}^{\mathrm{i} k \alpha \cdot x}-\int_{B_{a}} g(x, y, k) q(y) u(y, \alpha, k) \mathrm{d} y, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
g(x, y, k):=\frac{\mathrm{e}^{\mathrm{i} k|x-y|}}{4 \pi|x-y|} . \tag{8}
\end{equation*}
$$

If

$$
\begin{equation*}
v=\mathrm{e}^{-\mathrm{i} k \alpha \cdot x} u(x, \alpha, k), \tag{9}
\end{equation*}
$$

then

$$
\begin{equation*}
v=1-\int_{B_{a}} G(x-y, k) q(y) v(y, \alpha, k) \mathrm{d} y, \tag{10}
\end{equation*}
$$

where G is defined in (5).
Define ϵ by the formula

$$
\begin{equation*}
v=1+\epsilon . \tag{11}
\end{equation*}
$$

Then (10) can be rewritten as

$$
\begin{equation*}
\epsilon(x, \alpha, k)=-\int_{\mathbb{R}^{3}} G(x-y, k) q(y) \mathrm{d} y-T \epsilon, \tag{12}
\end{equation*}
$$

where

$$
T \epsilon:=\int_{B_{a}} G(x-y, k) q(y) \epsilon(y, \alpha, k) \mathrm{d} y .
$$

The Fourier transform of (12) yields (see (4), (6))

$$
\begin{equation*}
\tilde{\epsilon}(\xi, \alpha, k)=-\frac{\tilde{q}(\xi)}{\xi^{2}-2 k \alpha \cdot \xi}-\frac{1}{(2 \pi)^{3}} \frac{1}{\xi^{2}-2 k \alpha \cdot \xi} \tilde{q} * \tilde{\epsilon} . \tag{13}
\end{equation*}
$$

An essential ingredient of our proof in section 3 is the following lemma, proved by the author (see its proof in [9], p 262, or in [8]):

Lemma 2.1. If $A_{j}(\beta, \alpha, k)$ is the scattering amplitude corresponding to the potential q_{j}, then $-4 \pi\left[A_{1}(\beta, \alpha, k)-A_{2}(\beta, \alpha, k)\right]=\int_{B_{1}}\left[q_{1}(x)-q_{2}(x)\right] u_{1}(x, \alpha, k) u_{2}(x,-\beta, k) \mathrm{d} x$,
where u_{j} is the scattering solution corresponding to q_{j}.

Consider an algebraic variety \mathcal{M} in \mathbb{C}^{3} defined by the equation

$$
\begin{equation*}
\theta \cdot \theta=1, \quad \theta \cdot \theta:=\theta_{1}^{2}+\theta_{2}^{2}+\theta_{3}^{2}, \quad \theta_{j} \in \mathbb{C} \tag{15}
\end{equation*}
$$

This is a non-compact variety, intersecting \mathbb{R}^{3} over the unit sphere S^{2}.
Let $R_{+}=[0, \infty)$. The following result is proved in [10], p 62.
Lemma 2.2. If assumption (A) holds, then the scattering amplitude $A(\beta, \alpha, k)$ is a restriction to $S^{2} \times S^{2} \times R_{+}$of a function $A\left(\theta^{\prime}, \theta, k\right)$ on $\mathcal{M} \times \mathcal{M} \times \mathbb{C}$, analytic on $\mathcal{M} \times \mathcal{M}$ and meromorphic on $\mathbb{C}, \theta^{\prime}, \theta \in \mathcal{M}, k \in \mathbb{C}$.

The scattering solution $u(x, \alpha, k)$ is a meromorphic function of k in \mathbb{C}, analytic in $\operatorname{Im} k \geqslant 0$, except, possibly, at the points $k=\mathrm{i} k_{j}, 1 \leqslant j \leqslant n$.

We need the notion of the Radon transform (see, e.g., [11]):

$$
\begin{equation*}
\hat{f}(\beta, \lambda):=\int_{\beta \cdot x=\lambda} f(x) \mathrm{d} \sigma \tag{16}
\end{equation*}
$$

where $\mathrm{d} \sigma$ is the element of the area of the plane $\beta \cdot x=\lambda, \beta \in S^{2}, \lambda=$ const. One has (see [11], pp 12, 15)

$$
\begin{align*}
& \int_{B_{a}} f(x) \mathrm{d} x=\int_{-a}^{a} \hat{f}(\beta, \lambda) \mathrm{d} \lambda \tag{17}\\
& \int_{B_{a}} \mathrm{e}^{\mathrm{i} k \beta \cdot x} f(x) \mathrm{d} x=\int_{-a}^{a} \mathrm{e}^{\mathrm{i} k \lambda} \hat{f}(\beta, \lambda) \mathrm{d} \lambda \tag{18}\\
& \hat{f}(\beta, \lambda)=\hat{f}(-\beta,-\lambda) \tag{19}
\end{align*}
$$

Finally, we need a Phragmen-Lindelöf lemma, which is proved in [1], p 69, and in [2].
Lemma 2.3. Let $f(z)$ be holomorphic inside an angle \mathcal{A} of opening $<\pi ;|f(z)| \leqslant c_{1} \mathrm{e}^{c_{2}|z|}$, $z \in \mathcal{A} ;|f(z)| \leqslant M$ on the boundary of \mathcal{A}; and f is continuous up to the boundary of \mathcal{A}. Then $|f(z)| \leqslant M, \forall z \in \mathcal{A}$.

3. Proof of theorem 1.1

We start with the observation that the scattering data in remark 1 determine uniquely the scattering data in theorem 1.1 by lemma 2.2.

Let us outline the ideas of the proof of theorem 1.1.
Assume that $q_{j}, j=1,2$, generate the same scattering data:

$$
A_{1}(-\beta, \beta, k)=A_{2}(-\beta, \beta, k) \quad \forall \beta \in S^{2}, \quad \forall k>0
$$

and let

$$
p(x):=q_{1}(x)-q_{2}(x) .
$$

Then by lemma 2.1, see equation (14), one gets

$$
\begin{equation*}
0=\int_{B_{a}} p(x) u_{1}(x, \beta, k) u_{2}(x, \beta, k) \mathrm{d} x, \quad \forall \beta \in S^{2}, \quad \forall k>0 . \tag{20}
\end{equation*}
$$

By (9) and (11) one can rewrite (20) as

$$
\begin{equation*}
\int_{B_{a}} \mathrm{e}^{2 i k \beta \cdot x}[1+\epsilon(x, k)] p(x) \mathrm{d} x=0, \quad \forall \beta \in S^{2}, \quad \forall k>0, \tag{21}
\end{equation*}
$$

where

$$
\epsilon(x, k):=\epsilon:=\epsilon_{1}(x, k)+\epsilon_{2}(x, k)+\epsilon_{1}(x, k) \epsilon_{2}(x, k) .
$$

By lemma 2.2, relations (20) and (21) hold for complex k,

$$
\begin{equation*}
k=\frac{\kappa+\mathrm{i} \eta}{2}, \quad \kappa+\mathrm{i} \eta \neq 2 \mathrm{i} k_{j}, \quad \eta \geqslant 0 \tag{22}
\end{equation*}
$$

in particular, for $\eta>k_{n}, \kappa \in \mathbb{R}$. Using formulas (3)-(4), one derives from (21) the relation
$\tilde{p}((\kappa+\mathrm{i} \eta) \beta)+\frac{1}{(2 \pi)^{3}}(\tilde{\epsilon} * \tilde{p})((\kappa+\mathrm{i} \eta) \beta)=0 \quad \forall \beta \in S^{2}, \quad \forall \kappa \in \mathbb{R}, \quad \eta>k_{n}$,
where the notation $(f * g)(z)$ means that the convolution $f * g$ is calculated at the argument $(\kappa+\mathrm{i} \eta) \beta$.

One has
$\sup _{\beta \in S^{2}}|\tilde{\epsilon} * \tilde{p}|:=\sup _{\beta \in S^{2}}\left|\int_{\mathbb{R}^{3}} \tilde{(}((\kappa+\mathrm{i} \eta) \beta-s) \tilde{p}(s) \mathrm{d} s\right| \leqslant v(\kappa, \eta) \sup _{s \in \mathbb{R}^{3}}|\tilde{p}(s)|$,
where

$$
v(\kappa, \eta):=\sup _{\beta \in S^{2}} \int_{\mathbb{R}^{3}}|\tilde{\epsilon}((\kappa+\mathrm{i} \eta) \beta-s)| \mathrm{d} s
$$

We will prove that if $\eta=\eta(\kappa)=O(\ln \kappa)$, then the following inequality holds:

$$
\begin{equation*}
0<\nu(\kappa, \eta(\kappa))<1, \quad \kappa \rightarrow \infty \tag{25}
\end{equation*}
$$

If one proves that

$$
\begin{equation*}
\sup _{\beta \in S^{2}}|\tilde{p}((\kappa+\mathrm{i} \eta(\kappa)) \beta)| \geqslant \sup _{s \in \mathbb{R}^{3}}|\tilde{p}(s)|, \quad \kappa \rightarrow \infty, \tag{26}
\end{equation*}
$$

then it follows from (23)-(26) that $\tilde{p}(s)=0$, so $p(x)=0$, and theorem 1.1 is proved. Indeed, it follows from (23) and (26) that

$$
\sup _{s \in \mathbb{R}^{3}}|\tilde{p}(s)| \leqslant \frac{1}{(2 \pi)^{3}} v(k, \eta) \sup _{s \in \mathbb{R}^{3}}|\tilde{p}(s)| .
$$

If (25) holds, then the above equation implies that $\tilde{p}=0$. This and the injectivity of the Fourier transform imply that $p=0$.

This completes the outline of the proof of theorem 1.1.
Let us now establish estimates (25) and (26).
We assume that $p(x) \not \equiv 0$, because otherwise there is nothing to prove. If $p(x) \not \equiv 0$, then

$$
\max _{s \in \mathbb{R}^{3}}|\tilde{p}(s)|:=\mathcal{P} \neq 0
$$

Lemma 3.1. If assumption (A) holds and $\mathcal{P} \neq 0$, then

$$
\begin{equation*}
\limsup _{\eta \rightarrow \infty} \max _{\beta \in S^{2}}|\tilde{p}((\kappa+\mathrm{i} \eta) \beta)|=\infty \tag{27}
\end{equation*}
$$

where $\kappa>0$ is arbitrary but fixed. For any $\kappa>0$ there is a $\eta=\eta(\kappa)$, such that

$$
\begin{equation*}
\max _{\beta \in S^{2}}|\tilde{p}((\kappa+\mathrm{i} \eta(\kappa)) \beta)|=\mathcal{P}, \tag{28}
\end{equation*}
$$

where the number $\mathcal{P}:=\max _{s \in \mathbb{R}^{3}}|\tilde{p}(s)|$, and

$$
\begin{equation*}
\eta(\kappa)=O(\ln \kappa) \quad \text { as } \quad \kappa \rightarrow+\infty . \tag{29}
\end{equation*}
$$

Proof of lemma 3.1. By formula (18) one gets

$$
\begin{equation*}
\tilde{p}((\kappa+\mathrm{i} \eta) \beta)=\int_{B_{a}} p(x) \mathrm{e}^{\mathrm{i}(\kappa+\mathrm{i} \eta) \beta \cdot x} \mathrm{~d} x=\int_{-a}^{a} \mathrm{e}^{\mathrm{i} \kappa \lambda-\eta \lambda} \hat{p}(\beta, \lambda) \mathrm{d} \lambda . \tag{30}
\end{equation*}
$$

The function $\hat{p}(\beta, \lambda)$ satisfies (19). Therefore,

$$
\begin{equation*}
\max _{\beta \in S^{2}}|\tilde{p}((\kappa+\mathrm{i} \eta(\kappa)) \beta)|=\max _{\beta \in S^{2}}|\tilde{p}((\kappa-\mathrm{i} \eta(\kappa)) \beta)| . \tag{31}
\end{equation*}
$$

Indeed,

$$
\begin{align*}
\max _{\beta \in S^{2}} \mid \tilde{p}((\kappa+\mathrm{i} \eta(\kappa)) \beta) & =\max _{\beta \in S^{2}}\left|\int_{-a}^{a} \mathrm{e}^{\mathrm{i} \kappa \lambda-\eta \lambda} \hat{p}(\beta, \lambda) \mathrm{d} \lambda\right| \\
& =\max _{\beta \in S^{2}}\left|\int_{-a}^{a} \mathrm{e}^{-\mathrm{i} \kappa \mu+\eta \mu} \hat{p}(\beta,-\mu) \mathrm{d} \mu\right| \\
& =\max _{\beta^{\prime} \in S^{2}}\left|\int_{-a}^{a} \mathrm{e}^{-\mathrm{i} \kappa \mu+\eta \mu} \hat{p}\left(-\beta^{\prime},-\mu\right) \mathrm{d} \mu\right| \\
& =\max _{\beta^{\prime} \in S^{2}}\left|\int_{-a}^{a} \mathrm{e}^{-\mathrm{i} \kappa \mu+\eta \mu} \hat{p}\left(\beta^{\prime}, \mu\right) \mathrm{d} \mu\right| \\
& =\max _{\beta \in S^{2}}|\tilde{p}((\kappa-\mathrm{i} \eta) \beta)| . \tag{32}
\end{align*}
$$

Here we took into account that $\hat{p}(\beta, \lambda)$ is a real-valued function because $q_{j}(x)$ are real valued. Therefore,

$$
\left|\int_{-a}^{a} \mathrm{e}^{-\mathrm{i} \kappa \mu+\eta \mu} \hat{p}(\tilde{\beta}, \mu) \mathrm{d} \mu\right|=\left|\int_{-a}^{a} \mathrm{e}^{\mathrm{i} \kappa \mu+\eta \mu} \hat{p}(\tilde{\beta}, \mu) \mathrm{d} \mu\right|=\max _{\beta \in S^{2}}|\tilde{p}((\kappa-\mathrm{i} \eta) \beta)| .
$$

If $p(x) \not \equiv 0$, then (30) and (31) imply (27), as follows from lemma 2.3. Let us give a detailed argument.

Consider the function h of the complex variable $z:=\kappa+\mathrm{i} \eta$:

$$
\begin{equation*}
h:=h(z, \beta):=\int_{-a}^{a} \mathrm{e}^{\mathrm{i} \lambda \lambda} \hat{p}(\beta, \lambda) \mathrm{d} \lambda . \tag{33}
\end{equation*}
$$

If (27) is false, then

$$
\begin{equation*}
|h(z, \beta)| \leqslant c \quad \forall z=\kappa+\mathrm{i} \eta, \quad \eta \geqslant 0, \quad \forall \beta \in S^{2}, \tag{34}
\end{equation*}
$$

where $\kappa \geqslant 0$ is an arbitrary fixed number, and the constant $c>0$ does not depend on β and η.
Thus, $|h|$ is bounded on the ray $\{\kappa=0, \eta \geqslant 0\}$, which is part of the boundary of the right angle \mathcal{A}, and the other part of its boundary is the ray $\{\kappa \geqslant 0, \eta=0\}$. Let us check that $|h|$ is bounded on this ray also.

One has

$$
\begin{equation*}
|h(\kappa, \beta)| \leqslant\left|\int_{-a}^{a} \mathrm{e}^{\mathrm{i} \kappa \lambda} \hat{p}(\beta, \lambda) \mathrm{d} \lambda\right| \leqslant \int_{-a}^{a}|\hat{p}(\beta, \lambda)| \mathrm{d} \lambda \leqslant c \tag{35}
\end{equation*}
$$

where c stands for various constants. From (34)-(35) it follows that on the boundary of the right angle \mathcal{A}, namely, on the two rays $\{\kappa \geqslant 0, \eta=0\}$ and $\{\kappa=0, \eta \geqslant 0$, \}, the entire function $h(z, \beta)$ is bounded, $|h(z, \beta)| \leqslant c$, and inside \mathcal{A} this function satisfies the estimate

$$
\begin{equation*}
|h(z, \beta)| \leqslant \mathrm{e}^{|\eta| a} \int_{-a}^{a}|\hat{p}(\beta, \lambda)| \mathrm{d} \lambda \leqslant c \mathrm{e}^{|\eta| a} . \tag{36}
\end{equation*}
$$

Therefore, by lemma $2.3,|h(z, \beta)| \leqslant c$ in the whole angle \mathcal{A}.

By (31) the same argument is applicable to the remaining three right angles, the union of which is the whole complex z-plane \mathbb{C}. Therefore,

$$
\begin{equation*}
\sup _{z \in \mathbb{C}, \beta \in S^{2}}|h(z, \beta)| \leqslant c \tag{37}
\end{equation*}
$$

This implies that $h(z, \beta)=c$.
Since $\hat{p}(\beta, \lambda) \in L^{1}(-a, a)$, the relation

$$
\begin{equation*}
\int_{-a}^{a} \mathrm{e}^{\mathrm{i} z \lambda} \hat{p}(\beta, \lambda) \mathrm{d} \lambda=c \quad \forall z \in \mathbb{C} \tag{38}
\end{equation*}
$$

implies that $c=0$, so $\hat{p}(\beta, \lambda)=0$. Therefore $p(x)=0$, contrary to our assumption. Consequently, relation (27) is proved.

Relation (28) follows from (27) because for large η the left-hand side of (28) is larger than \mathcal{P} due to (27), while for $\eta=0$ the left-hand side of (28) is not larger than \mathcal{P} by the definition of the Fourier transform.

Let us derive estimate (29).
From the assumption $p(x) \in H_{0}^{\ell}\left(B_{a}\right)$ it follows that

$$
\begin{equation*}
|\tilde{p}((\kappa+\mathrm{i} \eta) \beta)| \leqslant c \frac{\mathrm{e}^{a|\eta|}}{\left(1+\kappa^{2}+\eta^{2}\right)^{\ell / 2}} \tag{39}
\end{equation*}
$$

This inequality is established in Lemma 3.2, below.
The right-hand side of this inequality is of the order $O(1)$ as $\kappa \rightarrow \infty$ if and only if $|\eta|=O(\ln \kappa)$, which is relation (29).

Lemma 3.2. If $p \in H_{0}^{\ell}\left(B_{a}\right)$ then estimate (39) holds.
Proof. Consider $\partial_{j} p:=\frac{\partial p}{\partial x_{j}}$. One has

$$
\begin{align*}
\left|\int_{B_{a}} \partial_{j} p \mathrm{e}^{\mathrm{i}(\kappa+\mathrm{i} \eta) \beta \cdot x} \mathrm{~d} x\right| & =\left|-\mathrm{i}(\kappa+\mathrm{i} \eta) \beta_{j} \int_{B_{a}} p(x) \mathrm{e}^{\mathrm{i}(\kappa+\mathrm{i} \eta) \beta \cdot x} \mathrm{~d} x\right| \\
& =\left(\kappa^{2}+\eta^{2}\right)^{1 / 2}|\tilde{p}((\kappa+\mathrm{i} \eta) \beta)| . \tag{40}
\end{align*}
$$

The left-hand side of the above formula admits the following estimate:

$$
\left|\int_{B_{a}} \partial_{j} p \mathrm{e}^{\mathrm{i}(\kappa+\mathrm{i} \eta) \beta \cdot x} \mathrm{~d} x\right| \leqslant c \mathrm{e}^{|\eta| a},
$$

where the constant $c>0$ is proportional to $\left\|\partial_{j} p\right\|_{L^{2}\left(B_{a}\right)}$. Therefore,

$$
\begin{equation*}
|\tilde{p}((\kappa+\mathrm{i} \eta) \beta)| \leqslant c\left[1+\left(\kappa^{2}+\eta^{2}\right)\right]^{-1 / 2} \mathrm{e}^{|\eta| a} \tag{41}
\end{equation*}
$$

Repeating this argument one gets estimate (39).
Estimate (41) implies that if estimate (29) holds and $\kappa \rightarrow \infty$, then the quantity $\sup _{\beta \in S^{2}}|\tilde{p}((\kappa+\mathrm{i} \eta) \beta)|$ remains bounded as $\kappa \rightarrow \infty$.

If η is fixed and $\kappa \rightarrow \infty$, then $\sup _{\beta \in S^{2}}|\tilde{p}((\kappa+\mathrm{i} \eta) \beta)| \rightarrow 0$ by the Riemann-Lebesgue lemma. This and (27) imply the existence of $\eta=\eta(\kappa)$, such that (28) holds, and, consequently, (26) holds. This $\eta(\kappa)$ satisfies (29) because \mathcal{P} is bounded.

To complete the proof of theorem 1.1 one has to establish estimate (25). This estimate will be established if one proves the following:

$$
\begin{equation*}
\lim _{\kappa \rightarrow \infty} v(\kappa):=\lim _{\kappa \rightarrow \infty} v(\kappa, \eta(\kappa))=0 \tag{42}
\end{equation*}
$$

where $\eta(\kappa)=O(\ln \kappa)$ and

$$
\begin{equation*}
\nu(\kappa, \eta)=\sup _{\beta \in S^{2}} \int_{\mathbb{R}^{3}}|\tilde{\epsilon}((\kappa+\mathrm{i} \eta) \beta-s)| \mathrm{d} s . \tag{43}
\end{equation*}
$$

Our argument is valid for $\epsilon_{1}, \epsilon_{2}$ and $\epsilon_{1} \epsilon_{2}$, so we will use the letter ϵ and equation (13) for $\tilde{\epsilon}$.

We prove that (13) can be solved by iterations if $|k+i \eta|$ is sufficiently large and $\eta=\eta(k)$, because for such k the operator in this equation has small norm. Therefore, the estimate of the solution $\tilde{\epsilon}$ to this equation is similar to the estimate of the free term of this equation. Thus, it is sufficient to check estimates (42)-(43) for the function $\tilde{q}(\xi)\left(\xi^{2}-2 k \beta \cdot \xi\right)^{-1}$, with $2 k$ replaced by $\kappa+\mathrm{i} \eta$, because equation (12) has an operator

$$
T \epsilon=\int_{B_{a}} G(x-y, k) q(y) \epsilon(y, k) \mathrm{d} y
$$

and the norm $\left\|T^{2}\right\|$ (in the space $C\left(B_{a}\right)$ of functions with the sup norm) tends to zero as $\kappa=2 \operatorname{Re} k \rightarrow \infty$. Consequently, equation (12) can be solved by iterations and the main term in its solution, as $|\kappa+i \eta| \rightarrow \infty, \eta \geqslant 0$, is the free term in this equation. The same is true for the Fourier transform of equation (12), i.e. for equation (13).

Let us estimate the integral

$$
\begin{align*}
I & =\sup _{\beta \in S^{2}} \int_{\mathbb{R}^{3}} \frac{|\tilde{q}((\kappa+\mathrm{i} \eta) \beta-s)| \mathrm{d} s}{\left.\mid[(\kappa+\mathrm{i} \eta) \beta-s)^{2}-(\kappa+\mathrm{i} \eta) \beta \cdot((\kappa+\mathrm{i} \eta) \beta-s)\right] \mid} \\
& \leqslant c \sup _{\beta \in S^{2}} \mathrm{e}^{|\eta| a} \int_{\mathbb{R}^{3}} \frac{\mathrm{~d} s}{\left|s^{2}-(\kappa+\mathrm{i} \eta) \beta \cdot s\right|\left[1+(\kappa \beta-s)^{2}+\eta^{2}\right]^{\ell / 2}} \\
& :=c \mathrm{e}^{|\eta| a} J . \tag{44}
\end{align*}
$$

Here estimate (39) was used.
Let us write the integral J in the spherical coordinates with the x_{3}-axis directed along the vector $\beta,|s|=r, \beta \cdot s=r \cos \theta:=r t,-1 \leqslant t \leqslant 1$. Let

$$
\begin{equation*}
\gamma:=\kappa^{2}+\eta^{2} . \tag{45}
\end{equation*}
$$

Then

$$
\begin{align*}
J & \leqslant 2 \pi \int_{0}^{\infty} \mathrm{d} r r \int_{-1}^{1} \frac{\mathrm{~d} t}{\left[(r-\kappa t)^{2}+\eta^{2} t^{2}\right]^{1 / 2}\left(1+\gamma+r^{2}-2 r \kappa t\right)^{\ell / 2}} \\
& :=2 \pi \int_{0}^{\infty} \mathrm{d} r r B(r) \tag{46}
\end{align*}
$$

where
$B:=B(r)=B(r, \kappa, \eta):=\int_{-1}^{1} \frac{\mathrm{~d} t}{\left[(r-\kappa t)^{2}+\eta^{2} t^{2}\right]^{1 / 2}\left(1+\gamma+r^{2}-2 r \kappa t\right)^{\ell / 2}}$.
If $t \in[-1,1]$, then

$$
\begin{equation*}
1+\gamma+r^{2}-2 r \kappa t \geqslant 1+\gamma^{2}+r^{2}-2 r \kappa=1+\eta^{2}+(r-\kappa)^{2} . \tag{48}
\end{equation*}
$$

Thus,

$$
\begin{align*}
B & \leqslant \frac{1}{\left[1+\eta^{2}+(r-\kappa)^{2}\right]^{\ell / 2}} \frac{1}{\sqrt{\gamma}} \int_{-1}^{1} \frac{\mathrm{~d} t}{\left[\left(t-\frac{r \kappa}{\gamma}\right)^{2}+\frac{\eta^{2} r^{2}}{\gamma^{2}}\right]^{1 / 2}} \\
& =\frac{1}{\sqrt{\gamma}\left[1+\eta^{2}+(r-\kappa)^{2}\right]^{\ell / 2}}|\ln | \frac{1-\frac{r \kappa}{\gamma}+\sqrt{\left(1-\frac{r \kappa}{\gamma}\right)^{2}+\frac{\eta^{2} r^{2}}{\gamma^{2}}}}{\sqrt{\left(1+\frac{r \kappa}{\gamma}\right)^{2}+\frac{\eta^{2} r^{2}}{\gamma^{2}}}-1-\frac{r \kappa}{\gamma}}| | \tag{49}
\end{align*}
$$

Consequently,

$$
\begin{equation*}
J \leqslant \frac{2 \pi}{\sqrt{\gamma}} \int_{0}^{\infty} \frac{\mathrm{d} r r}{\left[1+\eta^{2}+(r-\kappa)^{2}\right]^{\ell / 2}}|\ln | \frac{1-\frac{r \kappa}{\gamma}+\sqrt{\left(1-\frac{r \kappa}{\gamma}\right)^{2}+\frac{\eta^{2} r^{2}}{\gamma^{2}}}}{\sqrt{\left(1+\frac{r \kappa}{\gamma}\right)^{2}+\frac{\eta^{2} r^{2}}{\gamma^{2}}}-1-\frac{r \kappa}{\gamma}}| | \tag{50}
\end{equation*}
$$

The integral in (50) converges: as $r \rightarrow \infty$ the ratio under the logarithm sign tends to 1 , and the factor in front of the logarithm is $O\left(r^{-(\ell-1)}\right)$ as $r \rightarrow \infty$. Since $\ell>2$, the integral in (50) converges.

The modulus of the logarithmic term in (50) behaves asymptotically, as $r \rightarrow 0$, like $\left|\ln \left(\frac{r^{2} \kappa^{2}}{\gamma^{2}}\right)\right|$. Thus, $\lim _{r \rightarrow 0} r\left|\ln \left(\frac{r^{2} \kappa^{2}}{\gamma^{2}}\right)\right|=0$ for every fixed $\kappa>0$, and this limit is uniform with respect to κ as $\kappa \rightarrow \infty$ if $\eta=O(\ln \kappa)$. Therefore, the integrand in (50) is defined for $r=0$ to be zero by continuity.

As $\gamma=\eta^{2}+\kappa^{2} \rightarrow \infty$ and $\eta=O(\ln \kappa)$, the integrand in (50) tends to zero for every fixed $r \geqslant 0$, and (50) implies

$$
\begin{equation*}
J \leqslant o\left(\frac{1}{\sqrt{\gamma}}\right), \quad \gamma \rightarrow \infty \tag{51}
\end{equation*}
$$

Consequently, (44) implies

$$
\begin{equation*}
I \leqslant c r^{|\eta| a} o\left(\frac{1}{\sqrt{\kappa^{2}+\eta^{2}}}\right), \quad \kappa \rightarrow \infty, \quad \eta=O(\ln \kappa) \tag{52}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\lim _{\kappa \rightarrow \infty, \eta=O(\ln \kappa)} I=0 \tag{53}
\end{equation*}
$$

This implies estimate (42). Theorem 1.1 is proved.
Remark 2. Similarly one can prove that the data $A\left(\beta, \alpha_{0}, k\right), \forall \beta \in S^{2}, \forall k>0$, and a fixed $\alpha=\alpha_{0} \in S^{2}$ determine q uniquely if assumption (A) holds.

Appendix. Estimate of the norm of the operator $\boldsymbol{T}^{\mathbf{2}}$

Let

$$
\begin{equation*}
T f:=\int_{B_{a}} G(x-y, \kappa+\mathrm{i} \eta) q(y) f(y) \mathrm{d} y . \tag{A.1}
\end{equation*}
$$

Assume $q \in H_{0}^{\ell}\left(B_{a}\right), \ell>2, f \in C\left(B_{a}\right)$. Our goal is to prove that equation (12) can be solved by iterations for all sufficiently large κ.

Consider T as an operator in $C\left(B_{a}\right)$. One has

$$
\begin{align*}
T^{2} f & =\int_{B_{a}} \mathrm{~d} z G(x-z, \kappa+\mathrm{i} \eta) q(z) \int_{B_{a}} G(z-y, \kappa+\mathrm{i} \eta) q(y) f(y) \mathrm{d} y \\
& =\int_{B_{a}} \mathrm{~d} y f(y) q(y) \int_{B_{a}} \mathrm{~d} z q(z) G(x-z, \kappa+\mathrm{i} \eta) G(z-y, \kappa+\mathrm{i} \eta) \tag{A.2}
\end{align*}
$$

Let us estimate the integral

$$
\begin{align*}
I(x, y) & :=\int_{B_{a}} G(x-z, \kappa+\mathrm{i} \eta) G(z-y, \kappa+\mathrm{i} \eta) q(z) \mathrm{d} z \\
& =\int_{B_{a}} \frac{\mathrm{e}^{\mathrm{i}(\kappa+\mathrm{i} \eta)[|x-z|-\beta \cdot(x-z)+|z-y|-\beta \cdot(z-y)]}}{16 \pi^{2}|x-z \| z-y|} q(z) \mathrm{d} z \\
& =\frac{1}{16 \pi^{2}} \int_{B_{a}} \frac{\mathrm{e}^{\mathrm{i}(\kappa+\mathrm{i} \eta)[|x-z|+|z-y|-\beta \cdot(x-y)]}}{|x-z \| z-y|} q(z) \mathrm{d} z \\
& :=\frac{\mathrm{e}^{-\mathrm{i}(\kappa+\mathrm{i} \eta)) \beta \cdot(x-y)}}{16 \pi^{2}} I_{1}(x, y) . \tag{A.3}
\end{align*}
$$

Let us use the following coordinates (see [10], p 391):

$$
\begin{align*}
& z_{1}=\ell s t+\frac{x_{1}+y_{1}}{2}, \quad z_{2}=\ell \sqrt{\left(s^{2}-1\right)\left(1-t^{2}\right)} \cos \psi+\frac{x_{2}+y_{2}}{2} \tag{A.4}\\
& z_{3}=\ell \sqrt{\left(s^{2}-1\right)\left(1-t^{2}\right)} \sin \psi+\frac{x_{3}+y_{3}}{2} \tag{A.5}
\end{align*}
$$

The Jacobian J of the transformation $\left(z_{1}, z_{2}, z_{3}\right) \rightarrow(\ell, t, \psi)$ is

$$
\begin{equation*}
J=\ell^{3}\left(s^{2}-t^{2}\right), \tag{A.6}
\end{equation*}
$$

where
$\ell=\frac{|x-y|}{2}, \quad|x-z|+|z-y|=2 \ell s, \quad|x-z|-|z-y|=2 \ell t$,
$|x-z \| z-y|=4 \ell^{2}\left(s^{2}-t^{2}\right), \quad 0 \leqslant \psi<2 \pi, \quad t \in[-1,1], \quad s \in[1, \infty)$.

One has

$$
\begin{equation*}
I_{1}=\ell \int_{a}^{\infty} \mathrm{e}^{2 \mathrm{i}(\kappa+\mathrm{i} \eta) \ell s} Q(s) \mathrm{d} s \tag{A.9}
\end{equation*}
$$

where
$Q(s):=Q\left(s, \ell, \frac{x+y}{2}\right)=\int_{0}^{2 \pi} \mathrm{~d} \psi \int_{-1}^{1} \mathrm{~d} t q\left(z\left(s, t, \psi ; \ell, \frac{x+y}{2}\right)\right)$,
and the function $Q(s) \in H_{0}^{2}\left(\mathbb{R}^{3}\right)$ for any fixed x, y. Therefore, an integration by parts in (A.9) yields the following estimate:

$$
\begin{equation*}
\left|I_{1}\right|=O\left(\frac{1}{|\kappa+\mathrm{i} \eta|}\right), \quad|\kappa+\mathrm{i} \eta| \rightarrow \infty \tag{A.11}
\end{equation*}
$$

From (A.2), (A.3) and (A.11) one gets

$$
\begin{equation*}
\left\|T^{2}\right\|=O\left(\frac{1}{\sqrt{\gamma}}\right), \quad \gamma:=\kappa^{2}+\eta^{2} \rightarrow \infty \tag{A.12}
\end{equation*}
$$

Therefore, integral equation (12), with k replaced by $\frac{\kappa+i \eta}{2}$, can be solved by iterations if γ is sufficiently large and $\eta \geqslant 0$. Consequently, integral equation (13) can be solved by iterations. Thus, estimate (42) holds if such an estimate holds for the free term in equation (13), that is, for the function $\frac{\tilde{q}}{\xi^{2}-(\kappa+i \eta) \beta \cdot \xi}$, namely, if estimate (53) holds.

References

[1] Levin B 1980 Distribution of Zeros of Entire Functions (Providence, RI: American Mathematical Society)
[2] Polya G and Szegö G 1983 Problems and Theorems in Analysis vol 1 (Berlin: Springer) problem III.6.5.322
[3] Ramm A G 2009 Inverse scattering with non-overdetermined data Phys. Lett. A 373 2988-91
[4] Ramm A G 1964 On the analytic continuation of the solution of the Schrödinger equation in the spectral parameter and the behavior of the solution to the nonstationary problem as $t \rightarrow \infty$ Uspechi Mat. Nauk 19 192-4
[5] Ramm A G 1968 Some theorems on analytic continuation of the Schrödinger operator resolvent kernel in the spectral parameter Izv. Acad. Nauk Arm. SSR, Math. 3 443-64
[6] Ramm A G 2005 Random Fields Estimation (Singapore: World Scientific)
[7] Ramm A G 1988 Recovery of the potential from fixed energy scattering data Inverse Problems 4 877-86 Ramm A G 1989 Recovery of the potential from fixed energy scattering data Inverse Problems 5255
[8] Ramm A G 2002 Stability of solutions to inverse scattering problems with fixed-energy data Milan J. Math. 70 97-161
[9] Ramm A G 2005 Inverse Problems (New York: Springer)
[10] Ramm A G 1986 Scattering by Obstacles (Dordrecht: Reidel)
[11] Ramm A G and Katsevich A I 1996 The Radon Transform and Local Tomography (Boca Raton, FL: CRC Press)
[12] Saito Y 1986 An approximation formula in inverse scattering problem J. Math. Phys. 27 1145-53

